Modeling and optimization of nanoemulsion containing Sorafenib for cancer treatment by response surface methodology
نویسندگان
چکیده
The aim of this study is the development of nanoemulsions for intravenous administration of Sorafenib, which is a poorly soluble drug with no parenteral treatment. The formulation was prepared by a high energy emulsification method and optimized by response surface methodology. The effects of overhead stirring time, high shear rate, high shear time, and cycles of high-pressure homogenizer were studied in the preparation of nanoemulsion loaded with Sorafenib. Most of the particles in nanoemulsion are spherical in shape, the smallest particle size being 82.14 nm. The results of the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole reveal that the optimum formulation does not affect normal cells significantly in low drug concentrations but could remove the cancer cells. Finally, a formulation containing Sorafenib retained its properties over a period of 90 days. With characterization, the study of the formulated nanoemulsion has the potential to be used as a parenteral nanoemulsion in the treatment of cancer. Graphical abstractSchematic figure of high pressure homogenizer device.
منابع مشابه
Modeling and optimization of oil refinery wastewater chemical oxygen demand removal in dissolved air flotation system by response surface methodology
In this present study the dissolved air flotation (DAF) system was investigated for the treatment of Kermanshah Oil Refinery wastewater. The effect of three parameters on flotation efficiency including of flow rate (outflow from the flotation tank), saturation pressure and coagulant dosage on chemical oxygen demand (COD) removal was examined experimentally. All the experiments were done under a...
متن کاملExperimental Studies, Response Surface Methodology and Molecular Modeling for Optimization and Mechanism Analysis of Methylene Blue Dye Removal by Different Clays
In this work, three types of natural clays including kaolinite, montmorillonite, and illite with different molecular structures, as adsorbents, are selected for the removal of methylene blue dye, and their performance is investigated. Also the optimization and the analysis of the dye adsorption mechanism are performed using the response surface methodology, molecular modeling, and experimental ...
متن کاملHydrothermal synthesis of surface-modified copper oxide-doped zinc oxide nanoparticles for degradation of acid black 1: Modeling and optimization by response surface methodology
Dyes are widely used in various industries most of them are not readily biodegradable and are consisted of number of toxic, mutagenic, and carcinogenic compounds. Therefore, it is essential to remove them from effluent before their discharge to the environment. The objective of this investigation was to synthesize copper oxide (CuO) doped zinc oxide (ZnO) nanoparticles under mild hydrothermal c...
متن کاملExperimental design and response surface modeling for optimization of humic substances removal by activated carbon: A kinetic and isotherm study
The presence of humic acid (HA) in water treatment processes is very harmful and the cause of undesirable color, taste, and smell. Drinking water containing high concentrations of humic substances can be the cause of many health problems. Therefore, the removal of these compounds from water resources is a very important topic. In this research, response surface methodology (RSM) has been used t...
متن کاملOptimization and Modeling of CuOx/OMWNT’s for Catalytic Reduction of Nitrogen Oxides by Response Surface Methodology
A series of copper oxide (CuOx) catalysts supported by oxidized multi-walled carbon nanotubes (OMWNT’s) were prepared by the wet impregnation method for the low temperature (200 °C) selective catalytic reduction of nitrogen oxides (NOx) using NH3 as a reductant agent in the presence of excess oxygen. These catalysts were characterized by FTIR, XRD, SEM-EDS, and H2-TPR meth...
متن کامل